
Flounder: an RL Chess Agent
Andy Bartolo, Travis Geis and Varun Vijay
Stanford University

We implement Flounder, a chess agent using MTD(bi) search and evalua-
tion functions trained with reinforcement learning. We explore both linear
and nonlinear evaluation functions. We discuss differences between Floun-
der and other chess engines, including Stockfish and Sunfish.

1. INTRODUCTION

In 1950, Claude Shannon’s seminal Programming a Computer for
Playing Chess introduced the world to the concept of the modern
chess-playing agent. Shannon presented minimax search as a nat-
ural means of making competitive moves, coupled with an evalu-
ation function to guide the search algorithm. In the decades since,
computer chess has evolved into a major field of research, with
both more efficient search algorithms and more powerful evalua-
tion functions. Today, chess serves as a classic benchmark for new
search, evaluation, and learning techniques.

2. PROBLEM MODEL

We model chess as a two-player game with perfect information: the
entire board is visible to both players so opponents can assess each
other’s possible moves according to minimax search when deciding
an optimal policy. Chess’s high branching factor means that search
algorithms must use optimization techniques like alpha-beta prun-
ing to avoid searching the game tree exhaustively. Players receive
a reward only upon winning a game. The values of non-terminal
states may be used as heuristics for the minimax evaluation func-
tion, but they do not contribute directly to players scores.

Each state in the game tree represents a board position combined
with the color of the current player. The board position also in-
cludes information about which players can castle and whether en-
passant capture is legal. The current player seeks to maximize his
own reward while minimizing that of the opponent. Given a board
position and player, possible actions are the legal chess moves
available to that player. The value of a given board position is deter-
mined by the combination of a feature extractor and corresponding
feature weights. We employ reinforcement learning to discover the
weight of each feature.

2.1 Baseline Implementation

To establish a performance baseline for our agent, we implement a
baseline agent that makes random legal moves.

2.2 Oracle Implementation

To understand the upper bound of performance we expect from our
agent, we consider two existing chess engines, Stockfish and Sun-
fish.

Sunfish is a simple chess engine written in Python and designed
for readability and brevity [Ahle 2016]. It uses a scoring function
based on lookup tables. For each piece type, Sunfish has an 8×8 ta-
ble of integers mapping board positions to the value of the piece in

Fig. 1: An illustration of minimax search for the optimal move. Actions are
legal moves, and states are board positions. The agent seeks the next board
position with the highest expected utility.

each position. The simplicity of the piece-square tables contributes
to Sunfish’s speed, particularly because the tables allow incremen-
tal adjustments to the value estimate of a board position during
search. As the engine tries moves and backtracks, it can add and
subtract the value of the moved piece from the tables rather than
recomputing the value in closed form [Wiki 2016]. Sunfish uses
the MTD(bi) search algorithm.

Stockfish is currently the most powerful open-source chess en-
gine. It excels at deep game tree search and includes advanced do-
main knowledge like endgame move tables. It is implemented in
C++ and uses a large dynamic programming cache and aggressive
search-tree pruning to achieve its high speed [Romstad and Kiiski
2016].

2.3 Evaluation of Baseline and Oracle

To evaluate the performance of the baseline and oracle agents, we
employ the Strategic Test Suites, thirteen sets of 100 board posi-
tions labeled with the optimal move from each position [Corbit and
Swaminathan 2010]. We give each of the oracle engines 500ms to
decide each move. Table I shows the number of moves each agent
chooses correctly for each of the thirteen test suites. For the ran-
dom agent, we average the number of correct moves over 100 runs
of each test suite. We discuss these results in more detail in Section
5.3.

The test suites allow fine-grained evaluation of the strength of
each engine in different scenarios. To understand more broadly the
disparity in power between the baseline and the strongest oracle, we
simulate games wherein Stockfish plays against the random agent.
As expected, Stockfish defeats the random agent in every game. We
also measure the length of the game in moves, in order to gauge
how much stronger Stockfish is than the random agent. Over 50
games, the average game length is 25.66 moves. Because Sunfish
does not use the python-chess API, we had difficulty using it in
games against our other agents; instead, we use it only as a refer-
ence for the Strategic Test Suites.

2 •

Test Suite Random Stockfish (500ms) Sunfish (500ms)
STS1 (Undermining) 2.69 89 13
STS2 (Open files and diagonals) 3.04 81 16
STS3 (Knight outposts) 3.07 77 23
STS4 (Square vacancy) 2.72 77 6
STS5 (Bishop vs. knight) 2.52 81 34
STS6 (Re-capturing) 2.83 78 21
STS7 (Offer of simplification) 2.89 75 9
STS8 (Advancement of f/g/h pawns) 2.52 77 9
STS9 (Advancement of a/b/c pawns) 2.71 75 7
STS10 (Simplification) 2.62 82 42
STS11 (Activity of the king) 3.23 74 7
STS12 (Center control) 2.49 79 13
STS13 (Pawn play in the center) 2.49 80 15

Table I. : Results of running the baseline and oracles on the Strategic Test
Suites. Each cell shows the count of moves chosen correctly. For the random
agent, the count of correct moves is an average over 100 runs of each test
suite.

3. SEARCH TECHNIQUES

The main work of the chess engine is to search for the optimal
move to make from the current board position. The optimal move
is defined to be the move that maximizes the expected utility of
future game states until the end of the game. Equivalently, it is the
move most likely to lead to victory.

Chess engines have used many different search algorithms to
navigate the large search space required for determining a move.
Because the branching factor is so large, chess engines must prune
the search tree for reasonable search runtime.

We began by implementing standard minimax search with alpha-
beta pruning, which we found to be too slow. We settled on an al-
gorithm called MTD(bi), which builds upon alpha-beta search and
can achieve faster runtime by exploiting its properties.

3.1 Alpha-Beta Search

Alpha-beta pruning improves on standard backtracking search by
avoiding certain parts of the search space. This search algorithm ex-
plores the game tree depth-first, visiting children of the root node in
left-to-right order. It maintains upper and lower bounds for the min-
imax value of the principal variation in the game tree, and prunes
subtrees outside those bounds as the bounds tighten. In the context
of chess, alpha-beta search allows the chess engine to consider only
a subset of all legal moves while still guaranteeing correctness.

For example, suppose the white player performs minimax search
to a depth of 2 plies (white’s move followed by black’s counter-
move). Consider white’s decision between two possible moves, A
and B. Evaluating move A, white concludes that black will not be
able to capture any piece in his countermove. Evaluating move B,
white discovers that one of black’s countermoves is to capture a
piece. White can immediately stop considering other possible sce-
narios after taking move B, since move A is already guaranteed
to be better than move B. The white player prunes the boards that
follow move B from the search tree.

3.2 Caching with Transposition Tables

We employ transposition tables to avoid duplicating calls to our
evaluation function. A transposition table is a hash table mapping
game states to their values. During minimax search, we first consult
the transposition table to determine the value of a board position. If
the value is in the table, we fetch it in constant time; otherwise, we
compute the value according to standard minimax search.

Fig. 2: An illustration of the operation of the MTD(bi) algorithm search-
ing for a principle variation with value 15. Through repeated calls to null-
window alpha-beta search, MTD(bi) performs binary search and converges
on the value of the principal variation on the fourth iteration.

3.3 MTD(bi)

Alpha-beta pruning alone reduces the size of search tree, but fur-
ther reduction is possible. The MTD(bi) algorithm is part of the
Memory-Enhanced Test-Driver family of algorithms introduced by
Plaat et al. in 1995 [Plaat 1995]. It is equivalent to Coplan’s C* al-
gorithm, introduced in 1982 [Coplan 1982]. The MTD algorithms
exploit properties of alpha-beta search and transposition tables to
reduce the work needed to find the principal variation (PV).

The key innovation of the MTD algorithms is in calling alpha-
beta search with a null window (where alpha and beta are equal, and
represent a guess at the value of the PV). The authors call the com-
bination of null-window alpha-beta search and transposition tables
“memory-enhanced test” (MT). The outcome of MT can be to find
the PV with precisely the value of the guess, or to discover that the
value of the PV is higher or lower than the guess.

By repeatedly performing null-window alpha-beta search with
different guesses, MTD algorithms converge on the true value of
the principal variation. The distinction among algorithms in the
family arises in the choice of the next guess. For example, MTD(f)
begins with an arbitrary guess. If alpha-beta search at the guess dis-
covers that the guess is too high and the real upper bound is b, then
the next guess is b−1. If the guess was too low and the lower bound
is actually a, then the next guess is at a+ 1.

Many chess engines use MTD(f), but one key assumption of the
algorithm is that the evaluation function takes on only integer val-
ues. If the value of the PV can lie between a and a+ 1, then taking
a step of size 1 might overshoot the target.

Because we employ reinforcement learning to determine feature
weights, our evaluation function can take on non-integer values.
Therefore, we use the MTD(bi) algorithm instead of MTD(f). In
MTD(bi), each guess at the value of the PV establishes a new upper
or lower bound on its true value, as in MTD(f). However, unlike in
MTD(f), the value of the next guess is the midpoint between the
new search bounds. MTD(bi) thus performs binary search over the
possible values of the PV, meaning the step size can be arbitrarily
small. When the upper and lower bounds are equal, the algorithm
has converged on the principal variation.

3.4 Iterative Deepening and the Killer Heuristic

The number of game subtrees pruned by algorithms like MTD(bi)
depends on the ordering of the search over the possible next moves.
Searching a subtree that is far from optimal will result in mild or
no pruning, after which another search over a more optimal move
is required. In contrast, searching near the principal variation first

• 3

Fig. 3: An illustration of the material configuration feature, which includes
the count of each type of piece on the board.

will result in tighter bounds on its value, leading to more extensive
pruning and thus faster search.

To maximize the number of pruned subtrees, we wish to approxi-
mate best-first move ordering during search. We use iterative deep-
ening combined with a “killer heuristic” to facilitate more rapid
tree pruning.

Iterative deepening is a form of depth-limited depth-first search.
The algorithm performs depth-first search at depth 1, then depth 2,
and so on until the depth limit. On each round of iterative deepen-
ing, we observe which moves lead to the tightening of the alpha-
beta bounds. These moves are called “killer moves” and are likely
to be among the best in the next round of iterative deepening, a
heuristic called the “killer heuristic” [Huberman 1968]. We store
killer moves in a cache based on their depth in the game tree, and
try them first on the next round of search when considering moves
at the same depth.

Korf has shown that iterative deepening is asymptotically op-
timal in time and space requirements, as well as in the cost of
found solutions, for exponential search trees [Korf 1985]. Its run-
time complexity is O(bd), where b is the branching factor and d is
the maximum search depth.

4. EVALUATION FUNCTIONS

We explore both a linear evaluation function and a neural network
for state evaluation, and use TD learning to train each. Linear evalu-
ation functions are easier to train and faster to compute, but cannot
encode complex relationships between features. Neural networks
can express nonlinear feature relationships but require more train-
ing data to learn those relationships. We use function approxima-
tion to learn generalizable patterns from board positions.

4.1 Feature Extractor and Linear Evaluation Function

To create a linear evaluation function, we apply a feature extractor
Φ to the current board position x, resulting in a vector of feature
values. We take the dot product of the feature vector with some
weight vector w to get the approximate value V̂ of the board posi-
tion:

Vx ≈ V̂x = Eval(x) = Φ(x) ·w (1)

Linear evaluation functions are efficient in time and memory use,
but they can only encode a simple relationship between features.
We must use many features to compensate if we wish to allow nu-
anced evaluation of the board position.

We borrowed ideas for our linear feature extractor from the ex-
perimental Giraffe chess engine [Lai 2015]. Giraffe uses a neural
network to construct an evaluation function from its features, but
our hope was that these features would be expressive enough for
a linear feature extractor as well. We implemented the following
features:

—Side to move, either white or black

—Castling rights for each player on either side of the king
—Material configuration, the number of each type of piece
—Piece lists, which record the existence and coordinates of each

piece, and the value of the least-valued attacker of the piece
—A constant of 1 to allow for an intercept term

In total, these feature templates result in 146 features for each
board position.

4.2 Neural Network

Neural networks allow us to encode more complex relationships
between features, in theory allowing for a more nuanced estimate
of the value of each board position. Prior chess engines including
Deep Pink [Berhardsson 2014] and Giraffe use neural networks to
construct their evaluation functions. Because neural networks can
learn nonlinear relationships between features, many chess engines
using neural networks can achieve good performance using simpler
input features, allowing the neural network to infer higher-level im-
plications of those features.

To try to overcome the limitations of a linear evaluation function,
we constructed a neural network using a simple representation of
the board, in addition to information about which player is to move,
and castling rights for each player. We based our implementation
on a similar system for playing Backgammon, described by Flem-
ing. The most significant feature is the board vector, B, which is
essentially a map of all the pieces on the board. B has dimensions
2 × 6 × 8 × 8, where B[c][p][r][f] = 1 if and only if the player
with color c has a piece of type p at the board position with rank r
and file f .

We feed the feature vector into a two-layer Multilayer Perceptron
consisting of a first hidden layer with 1,024 units, followed by a
Rectified Linear Unit non-linearity and a softmax classifier. The
softmax output is interpreted as the probability of a white victory
given the input board features.

4.3 TD Learning

The difficulty of approximating the value of board positions with
function approximation is in choosing weights for each feature. We
use temporal difference (TD) learning to discover the approximate
weight of each feature.

TD learning blends concepts of Monte-Carlo methods and dy-
namic programming. Like Monte-Carlo methods, TD learning uses
experience gleaned by exploring the state space to refine its esti-
mate of the value of each state. However, TD learning differs in
that it does not wait until the end of a session to incorporate feed-
back: it updates its estimate of state values on every state transition.
To make these online value updates, it incrementally adjusts previ-
ous state values fetched from lookup tables, in the style of dynamic
programming [Sutton and Barto 1998].

Chess’s large game tree means that even after the observation of
many games, the learning algorithm will not have observed most
possible board configurations. To decide on optimal moves from
states it has not observed, the learning algorithm must use func-
tion approximation for the evaluation function, rather than simply
looking up the value of a board position in a table.

We use a specific form of TD learning called TD(λ). The idea
of TD(λ) is to weight more heavily the contributions of states that
contribute more directly to a reward. With function approximation,
instead of weighting states more heavily, we increase the weight of
the features more responsible for a reward.

To track which features participate more heavily in a reward,
TD(λ) employs an eligibility trace vector et of the same dimen-

4 •

sions as the weight vector w. The elements in the trace vector de-
cay on each state transition according to a rate governed by the
trace-decay parameter λ. When the algorithm observes a reward,
elements in the feature vector corresponding to nonzero traces are
said to “participate” in the reward and their weights are updated.

The TD error for a state transition from St to St+1 is given by

δt
.
= Rt+1 + γv̂(St+1,wt)− v̂(St,wt) (2)

Rt+1 is the reward for transitioning from state St to St+1. In the
case of a linear evaluation function, v̂(St)

.
= Φ(St) ·wt. The TD

error δt contributes to the weight vector update according to the
eligibility of each weight and the learning rate α:

wt+1
.
= wt + αδtet (3)

The eligibility trace begins at 0 at the start of a learning session,
and is incremented on each state transition by the value gradient. It
decays at a rate given by γλ, where γ is the discount factor:

et
.
= ∇v̂(St,wt) + γλet−1 (4)

TD(λ) is a hybrid between pure Monte Carlo methods and the
simple 1-step TD learning algorithm. When λ = 1, the eligibility
of each weight falls by γ per transition, so the update will be the
Monte-Carlo update. When λ = 0, only the features of the previ-
ous state participate in a reward. Increasing λ from 0 assigns more
credit for a reward to states earlier in the session.

5. EXPERIMENTAL METHODS

5.1 Training the linear evaluation function

Because we use TD learning to find the optimal weight of each fea-
ture, we must train our system before it can play a game on its own.
Starting from a completely unknown weight vector, we must ”boot-
strap” the weights to some reasonable values. After bootstrapping,
we can train the agent further if desired by playing it against itself.
There are two possible training methods.

We can train the system “offline,” by allowing it to play many
games and compiling a record of its experience, then applying in a
single batch all of the updates to the weight vector. Offline learn-
ing offers the possibility of playing many simultaneous training
games across multiple computers, because the weight vector does
not change during each game.

Alternatively, we can train the system “online,” using the re-
ward observed after each state transition to update the weight vec-
tor immediately. Online learning incorporates feedback during each
game, so the system can learn more quickly. However, it does not
allow easy parallelization, because the weight vector could change
after each move.

We began by attempting offline training, but it proved difficult,
so we moved to an online learning approach. We attempted to im-
plement training by self-play, but our agent did not play quickly
enough to experience a meaningful number of games.

5.1.1 Offline learning. We began by attempting to implement
offline learning, because of its possibilities of parallelization. We
employed bootstrapping to obtain reasonable values for the feature
weights.

There are multiple possibilities for bootstrapping. For example,
David-Tabibi et al. bootstrap their genetic evaluation function using
a stronger chess engine as a mentor: they take the value estimates
of the stronger engine to be the ground-truth values of each board

position [David-Tabibi et al. 2008]. Lai, the author of the Giraffe
chess engine, uses a simplified feature extractor with knowledge
only of material counts to initialize Giraffe’s neural network before
self-play [Lai 2015].

Initially, we sought to avoid using a stronger chess engine as a
mentor for initializing our weight vector. Instead, we decided to
use positions from recorded chess matches as training examples,
with the winner of each match as ground truth for the value of each
position.

Given many board positions xi ∈ X , each labeled with win-
ner yi ∈ {−1, 1}, we can run stochastic gradient descent to find
weights w which correctly predict the winner of a match given
each board position. This stochastic gradient descent minimizes the
logistic-regression training loss:

Loss =
1

|Dtrain|
∑

(x,y)∈Dtrain

log (1 + e−(w·φ(x))y) (5)

In theory, finding some weight vector that labels many board po-
sitions with the correct winner implies that the weight vector con-
tains generalizable knowledge of the advantages and disadvantages
of each board position.

Unfortunately, using SGD to bootstrap our weight vector was
less effective than we anticipated. While the loss function initially
decreased over the first 1,000 training example games, the regres-
sion ultimately did not converge. We hypothesize that predicting
the outcome of an entire match based only on one board position
is too noisy for gradient descent to converge. In fact, it might be a
harder problem than playing chess.

5.1.2 Online Learning. Instead of using gradient descent to
train the weight vector offline, we can use a stronger chess engine
as a “mentor” to train our agent online. We used our oracle engine,
Stockfish, as a mentor. We simulated 4,400 games in which Stock-
fish played against itself, and our TD learning algorithm observed
the board positions and rewards.

To expedite the training, we must show the learning algorithm
decisive games with few ties, because only decisive games receive
nonzero reward. We configure one of the Stockfish agents with a
move-time limit of 100ms, and the other with a limit of 10ms. Us-
ing different move time limits ensures that one of the agents will
generally be able to search the game tree more thoroughly, making
it stronger.

Figure 4 shows the total number of moves our agent chooses
correctly on STS for varying levels of training. After only a few
training games, the agent outperforms the random baseline’s aver-
age total score of 35.82. Subsequent increases in strength require
many more training games, and the agent’s performance on STS
does not strictly increase. During training, we use a learning rate
α = 0.001 and a trace-decay parameter λ = 0.75.

Although Stockfish does not play deterministically, it is possi-
ble that using only Stockfish as a mentor provides example games
with too much repetition, leading the learning algorithm to overfit
to Stockfish’s playing style. Overfitting would reduce the general-
ity of learned board values and could result in decreases in general
test suite scores like the one seen at around 1,500 training games.

As mentioned previously, we expect that a linear evaluation func-
tion will only generalize so far. At some point, the complexity of the
knowledge of relationships between the pieces will exceed the ex-
pressive power of a linear combination. Such an upper limit could
contribute to the sharp drop in test suite score at around 4,000 train-
ing games.

• 5

Fig. 4: Plot of the total number of correct moves our agent chooses on STS
versus its level of training. The agent uses the linear evaluation function.
The dotted line shows the average performance of the baseline random
agent.

Due to time constraints, we did not train the agent further than
4,400 example games.

5.2 Training the neural-network evaluation function

To bootstrap our neural-network evaluation function, we ran on-
line TD(λ) on a database of recorded human chess games. We use
TD(λ) only for value iteration, and rely on the sequence of moves
made by the human players for control. Neural networks benefit
from well-behaved cost functions during training, and we hypothe-
sized that online training would be more effective than offline train-
ing for the neural network because the inclusion of the model’s
own evaluation in the TD(λ) update target makes the cost function
smoother.

Figure 5 shows the estimation error of the neural network dur-
ing training. We see an initial rise in estimation error, followed by
a steady decline after a large number of training example games.
The decrease in estimation error indicates the the neural network
learned to evaluate board positions more consistently as it trained.

We decided to use our linear evaluation function instead of the
neural network, because our agent could not finish games using the
neural network. We believe that the neural network did not distin-
guish the value of board positions clearly enough, so our search
function was unable to prune the search tree far enough for reason-
able search times. The neural network’s poor performance could
be due to limitations of the input feature vector, or perhaps due to
insufficient training examples.

5.3 Evaluating the Engine

Evaluating a chess engine is difficult, because there is no ground
truth for the values of board positions in chess. The most evident
measurable property of the game is the outcome. However, playing
entire games is time-consuming and looking only at their outcomes
masks the strengths and weaknesses of the engine.

5.3.1 STS. To achieve better resolution during evaluation, we
use the Strategic Test Suites [Corbit and Swaminathan 2010]. The
test suites consist of thirteen sets of 100 board positions each, with
each board position annotated with the optimal move from that po-

Fig. 5: Plot of an exponential moving average of the estimation error of the
neural network model during training. The model is trained on a database of
recorded human games using the TD(λ) update rule. After 120,000 training
examples, the training error begins to decrease, suggesting that the network
has learned to evaluate board positions more consistently. A positive estima-
tion error indicates that the network underestimates the value of a position,
while a negtive error indicates an overestimate.

sition. Stronger chess engines should be able to find the optimal
move more often than weaker engines.

We use STS to evaluate our own agent using the linear evaluation
function. We expect the oracle engines to score much higher than
our own, partly because they incorporate more domain-specific
knowledge of chess, and partly because they are mature projects.
See Table I for the results of running STS on the oracles. Table
II shows the results of testing Flounder against STS. As expected,
Stockfish performs the best on most suites, followed by Sunfish and
then our agent.

However, our agent scores near or above Sunfish on a few of the
test suites. For example, consider STS 10, which tests board po-
sitions involving offers of simplification. Simplification is a strat-
egy of trading pieces of equal value with the opponent, perhaps
to reduce the size of an attacking force or to prepare a less com-
plex endgame [Corbit and Swaminathan 2010]. Using search depth
d = 2 plies, our agent outperforms Sunfish 51-to-42 on STS 10.
At such a low search depth, our advantage likely indicates that our
evaluation function estimates more accurately the value of board
positions.

Also notable is the fact that our agent performs worse on this
same test suite when we increase the search depth to d = 3 plies.
It is difficult to identify exactly why the performance decreases so
markedly. At depth 2, the agent only considers a single move and
countermove, so a fair piece trade could appear trivially to be the
most optimal situation. With an extra ply of search depth, it is pos-
sible to consider the agent’s next move but not that of the opponent,
so our agent might erroneously attempt to gain some further posi-
tional advantage without considering possible retaliation. We were
unable to increase the search depth further, because doing so made
our search function too slow.

5.3.2 Moves until checkmate. In addition to testing our agent
with STS, we simulate games against Stockfish with our agent at
various levels of training. If our agent learns generalizable knowl-
edge as it trains, it should beat Stockfish, draw, or at least play
longer games before Stockfish wins.

Table III shows the results of playing our agent against Stockfish.
After 4,020 games of training, it outperforms the random baseline

6 •

Test Suite Sunfish (500 ms) Flounder d=2 Flounder d=3
STS1 (Undermining) 13 0 0
STS2 (Open files and diagonals) 16 0 2
STS3 (Knight outposts) 23 3 8
STS4 (Square vacancy) 6 4 5
STS5 (Bishop vs. knight) 34 32 32
STS6 (Re-capturing) 21 17 27
STS7 (Offer of simplification) 9 1 2
STS8 (Advancement of f/g/h pawns) 9 0 1
STS9 (Advancement of a/b/c pawns) 7 0 2
STS10 (Simplification) 42 51 35
STS11 (Activity of the king) 7 4 9
STS12 (Center control) 13 2 4
STS13 (Pawn play in the center) 15 0 2

Table II. : Results of running our engine at search depths 2 and 3 on the
Strategic Test Suite. The engine uses the linear scoring function described in
Section 4.1, trained by observing 4400 games of Stockfish with move time
100ms versus Stockfish with move time 10ms. For reference, we include
the results for Sunfish from Table I.

agent, but only slightly. One possible explanation is that Stockfish
is so much stronger than our agent that, in comparison, the progress
our agent made in training is not enough to differentiate it from an
agent without knowledge of strategy.

Another possibility arises from the nature of TD(λ) with a linear
evaluation function. Recall that in TD(λ) with λ 6= 1, features ob-
served later in the training session participate more in the reward.
Thus, we might expect the learning algorithm to favor features it
observes in the endgame. For example, in the endgame, it is of-
ten advantageous to move the king towards the center of the board,
but exposing the king is not a good opening policy. With a linear
evaluation function, it is difficult or impossible to learn both poli-
cies. If our agent has learned valuable knowledge of endgames but
opens poorly, it will not likely have the opportunity to demonstrate
its knowledge before Stockfish wins.

Training Level (games) Moves until Stockfish wins by checkmate
20 28.1
420 26.1
820 29.5
1220 16.1
1620 24.9
2020 23.7
2420 26.3
2820 29.1
3220 27.3
3620 26.3
4020 30.5

Table III. : Number of moves until our agent loses by checkmate against
Stockfish. The training level of the agent refers to the number of games it
observed to train its weight vector in online TD(λ). The number of moves
until loss is an average across 10 games. Recall from Section 2.3 that the
random agent lasts an average of 25.7 moves until checkmate by Stockfish.

6. FUTURE WORK

The biggest limitation of our chess agent’s strength is its slow
search function. Profiling and optimizing MTD(bi), possibly by re-
writing it in a more performant language would save a significant
amount of time in the searches. Faster search would allow our agent
to search to higher depths, meaning it could explore more future

scenarios and call the board evaluation function closer to the leaf
nodes of the search tree, which could improve its value estimates.

To improve the accuracy of our evaluation function, we could
incorporate attack and defend maps. For every coordinate on the
chess board, these maps encode the lowest-valued attacker (LVA)
and highest-valued defender (HVD) with respect to the current
player. High LVA values indicate the opponents reluctance to sac-
rifice his high-valued piece in an attack, and are thus better for the
current player. Likewise, the current player should prefer not to sac-
rifice his highest-valued defenders. These maps are computation-
ally expensive to produce, but could improve evaluation accuracy.

Several variants of TD-learning might offer faster, more accu-
rate weight convergence. One such algorithm is TDLeaf(λ) [Bax-
ter et al. 2000]. While TD(λ) only updates the value of the root
node of a search, TDLeaf(λ) updates the values of all states on the
principal variation. Another TD-learning algorithm that could offer
improvement is TreeStrap(minimax) [Veness et al. 2009], which is
similar to TDLeaf(λ), but performs updates on the principal varia-
tion nodes within one timestep when performing backups, instead
of across timesteps.

The minimax search itself might be made faster by replacing
deterministic alpha-beta cutoffs with probabilistic cutoffs [Knuth
and Moore 1976]. Probabilistic cutoffs allow selectively searching
more promising areas of the search tree to greater depth, while lim-
iting search depth in less optimal parts of the search tree.

REFERENCES

Thomas Ahle. 2016. Sunfish. (aug 2016). https://github.com/thomasahle/
sunfish

Jonathan Baxter, Andrew Tridgell, and Lex Weaver. 2000. Learning to play
chess using temporal differences. Machine Learning 40, 3 (2000), 243–
263.

Erik Berhardsson. 2014. Deep learning for... chess. (nov 2014). https:
//erikbern.com/2014/11/29/deep-learning-for-chess/

Kevin Coplan. 1982. A Special-Purpose Machine for an Improved Search
Algorithm for Deep Chess Combinations. In Advances in Computer
Chess: 3, M. R. B. Clarke (Ed.).

Dann Corbit and Swaminathan. 2010. Strategic Test Suites. (jun 2010).
https://sites.google.com/site/strategictestsuite/

Omid David-Tabibi, Moshe Koppel, and Nathan S. Netanyahu. 2008. Ge-
netic Algorithms for Mentor-assisted Evaluation Function Optimization.
In Proceedings of the 10th Annual Conference on Genetic and Evolution-
ary Computation (GECCO ’08). ACM, New York, NY, USA, 1469–1476.
DOI:http://dx.doi.org/10.1145/1389095.1389382

Niklas Fiekas. 2016. Python-chess. (nov 2016). https://github.com/niklasf/
python-chess

Jim Fleming. 2016. Before AlphaGo there was TD-
Gammon. (apr 2016). https://medium.com/jim-fleming/
before-alphago-there-was-td-gammon-13deff866197

Barbara J. Huberman. 1968. A program to play chess end games. Ph.D.
Dissertation. Stanford University.

Donald E Knuth and Ronald W Moore. 1976. An analysis of alpha-beta
pruning. Artificial intelligence 6, 4 (1976), 293–326.

Richard E. Korf. 1985. Depth-first iterative-deepening: An optimal admis-
sible tree search. Artificial Intelligence 27, 1 (1985), 97–109.

Matthew Lai. 2015. Giraffe: Using Deep Reinforcement Learn-
ing to Play Chess. Master’s thesis. Imperial College London,
https://arxiv.org/abs/1509.01549.

Bruce Moreland. 2002. Zobrist Keys: A means of enabling position com-
parison. (nov 2002). https://web.archive.org/web/20070822204038/http:
//www.seanet.com/∼brucemo/topics/zobrist.htm

• 7

Aske Plaat. 1995. Best-First Fixed-Depth Minimax Algorithms. (dec 1995).
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.93.8838

Aske Plaat. 1997. MTD(f): A Minimax Algorithm faster than NegaScout.
(dec 1997). https://people.csail.mit.edu/plaat/mtdf.html

Marco Costalba Romstad, Tord and Joona Kiiski. 2016. Stockfish. (nov
2016). https://stockfishchess.org/

Claude E. Shannon. 1950. XXII. Programming a computer for playing
chess. The London, Edinburgh, and Dublin Philosophical Magazine and
Journal of Science 41, 314 (1950), 256–275.

Richard S. Sutton and Andrew G. Barto. 1998. Reinforcement learning: An
introduction (first ed.). Vol. 1. Cambridge: MIT Press.

Joel Veness, David Silver, Alan Blair, and William Uther. 2009. Bootstrap-
ping from game tree search. In Advances in neural information process-
ing systems. 1937–1945.

Jean-Christophe Weill. 1991. Experiments With The NegaC* Search - An
Alternative for Othello Endgame Search. (1991). http://citeseerx.ist.psu.
edu/viewdoc/summary?doi=10.1.1.39.3189

Chess Programming Wiki. 2016. Piece Square Tables. (nov 2016). https:
//chessprogramming.wikispaces.com/Piece-Square+Tables

